Type: \(\displaystyle 2A^{2}_1\) (Dynkin type computed to be: \(\displaystyle 2A^{2}_1\))
Simple basis: 2 vectors: (1, 2, 2, 2, 2, 2, 1), (0, 0, 1, 2, 2, 2, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: C^{1}_3
simple basis centralizer: 3 vectors: (0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1, 0)
Number of k-submodules of g: 57
Module decomposition, fundamental coords over k: \(\displaystyle 3V_{2\omega_{2}}+4V_{\omega_{1}+\omega_{2}}+3V_{2\omega_{1}}+12V_{\omega_{2}}+12V_{\omega_{1}}+23V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, -2, -2, -1)(0, 0, 0, 0, -2, -2, -1)g_{-29}-2\varepsilon_{5}
Module 21(0, 0, 0, 0, -1, -2, -1)(0, 0, 0, 0, -1, -2, -1)g_{-24}-\varepsilon_{5}-\varepsilon_{6}
Module 31(0, 0, 0, 0, 0, -2, -1)(0, 0, 0, 0, 0, -2, -1)g_{-19}-2\varepsilon_{6}
Module 41(0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, -1, -1, -1)g_{-18}-\varepsilon_{5}-\varepsilon_{7}
Module 51(0, 0, 0, 0, 0, -1, -1)(0, 0, 0, 0, 0, -1, -1)g_{-13}-\varepsilon_{6}-\varepsilon_{7}
Module 61(0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, -1, -1, 0)g_{-12}-\varepsilon_{5}+\varepsilon_{7}
Module 71(0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, -1)g_{-7}-2\varepsilon_{7}
Module 81(0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, -1, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 91(0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, -1, 0, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 102(0, 0, -1, -1, -2, -2, -1)(0, 0, 0, 1, 0, 0, 0)g_{4}
g_{-36}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 111(0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 1, 0, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 121(0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 1, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 131(0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 1)g_{7}2\varepsilon_{7}
Module 142(0, 0, 0, -1, -2, -2, -1)(0, 0, 1, 1, 0, 0, 0)g_{10}
g_{-33}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{4}-\varepsilon_{5}
Module 152(0, 0, -1, -1, -1, -2, -1)(0, 0, 0, 1, 1, 0, 0)g_{11}
g_{-32}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 161(0, 0, 0, 0, 1, 1, 0)(0, 0, 0, 0, 1, 1, 0)g_{12}\varepsilon_{5}-\varepsilon_{7}
Module 171(0, 0, 0, 0, 0, 1, 1)(0, 0, 0, 0, 0, 1, 1)g_{13}\varepsilon_{6}+\varepsilon_{7}
Module 182(-1, -1, -1, -1, -2, -2, -1)(0, 1, 1, 1, 0, 0, 0)g_{15}
g_{-41}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 192(0, 0, 0, -1, -1, -2, -1)(0, 0, 1, 1, 1, 0, 0)g_{16}
g_{-28}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
Module 202(0, 0, -1, -1, -1, -1, -1)(0, 0, 0, 1, 1, 1, 0)g_{17}
g_{-27}
\varepsilon_{4}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
Module 211(0, 0, 0, 0, 1, 1, 1)(0, 0, 0, 0, 1, 1, 1)g_{18}\varepsilon_{5}+\varepsilon_{7}
Module 221(0, 0, 0, 0, 0, 2, 1)(0, 0, 0, 0, 0, 2, 1)g_{19}2\varepsilon_{6}
Module 232(0, -1, -1, -1, -2, -2, -1)(1, 1, 1, 1, 0, 0, 0)g_{20}
g_{-39}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
Module 242(-1, -1, -1, -1, -1, -2, -1)(0, 1, 1, 1, 1, 0, 0)g_{21}
g_{-38}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 252(0, 0, 0, -1, -1, -1, -1)(0, 0, 1, 1, 1, 1, 0)g_{22}
g_{-23}
\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{4}-\varepsilon_{7}
Module 262(0, 0, -1, -1, -1, -1, 0)(0, 0, 0, 1, 1, 1, 1)g_{23}
g_{-22}
\varepsilon_{4}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
Module 271(0, 0, 0, 0, 1, 2, 1)(0, 0, 0, 0, 1, 2, 1)g_{24}\varepsilon_{5}+\varepsilon_{6}
Module 282(0, -1, -1, -1, -1, -2, -1)(1, 1, 1, 1, 1, 0, 0)g_{25}
g_{-35}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
Module 292(-1, -1, -1, -1, -1, -1, -1)(0, 1, 1, 1, 1, 1, 0)g_{26}
g_{-34}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 302(0, 0, 0, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1, 1)g_{27}
g_{-17}
\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{7}
Module 312(0, 0, -1, -1, -1, 0, 0)(0, 0, 0, 1, 1, 2, 1)g_{28}
g_{-16}
\varepsilon_{4}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
Module 321(0, 0, 0, 0, 2, 2, 1)(0, 0, 0, 0, 2, 2, 1)g_{29}2\varepsilon_{5}
Module 332(0, -1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 1, 0)g_{30}
g_{-31}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
Module 342(-1, -1, -1, -1, -1, -1, 0)(0, 1, 1, 1, 1, 1, 1)g_{31}
g_{-30}
\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
Module 352(0, 0, 0, -1, -1, 0, 0)(0, 0, 1, 1, 1, 2, 1)g_{32}
g_{-11}
\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{4}+\varepsilon_{6}
Module 362(0, 0, -1, -1, 0, 0, 0)(0, 0, 0, 1, 2, 2, 1)g_{33}
g_{-10}
\varepsilon_{4}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
Module 372(0, -1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1, 1)g_{34}
g_{-26}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
Module 382(-1, -1, -1, -1, -1, 0, 0)(0, 1, 1, 1, 1, 2, 1)g_{35}
g_{-25}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 392(0, 0, 0, -1, 0, 0, 0)(0, 0, 1, 1, 2, 2, 1)g_{36}
g_{-4}
\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{4}+\varepsilon_{5}
Module 403(0, 0, -2, -2, -2, -2, -1)(0, 0, 0, 2, 2, 2, 1)g_{37}
g_{-3}
g_{-43}
2\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
-2\varepsilon_{3}
Module 412(0, -1, -1, -1, -1, 0, 0)(1, 1, 1, 1, 1, 2, 1)g_{38}
g_{-21}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
Module 422(-1, -1, -1, -1, 0, 0, 0)(0, 1, 1, 1, 2, 2, 1)g_{39}
g_{-20}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 433(0, 0, -1, -2, -2, -2, -1)(0, 0, 1, 2, 2, 2, 1)g_{40}
h_{7}+2h_{6}+2h_{5}+2h_{4}+h_{3}
g_{-40}
\varepsilon_{3}+\varepsilon_{4}
0
-\varepsilon_{3}-\varepsilon_{4}
Module 442(0, -1, -1, -1, 0, 0, 0)(1, 1, 1, 1, 2, 2, 1)g_{41}
g_{-15}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
Module 454(-1, -1, -2, -2, -2, -2, -1)(0, 1, 1, 2, 2, 2, 1)g_{42}
g_{-14}
g_{2}
g_{-46}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 463(0, 0, 0, -2, -2, -2, -1)(0, 0, 2, 2, 2, 2, 1)g_{43}
g_{3}
g_{-37}
2\varepsilon_{3}
\varepsilon_{3}-\varepsilon_{4}
-2\varepsilon_{4}
Module 474(0, -1, -2, -2, -2, -2, -1)(1, 1, 1, 2, 2, 2, 1)g_{44}
g_{-9}
g_{8}
g_{-45}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 484(-1, -1, -1, -2, -2, -2, -1)(0, 1, 2, 2, 2, 2, 1)g_{45}
g_{-8}
g_{9}
g_{-44}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 494(0, -1, -1, -2, -2, -2, -1)(1, 1, 2, 2, 2, 2, 1)g_{46}
g_{-2}
g_{14}
g_{-42}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
Module 503(-2, -2, -2, -2, -2, -2, -1)(0, 2, 2, 2, 2, 2, 1)g_{47}
g_{-1}
g_{-49}
2\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
-2\varepsilon_{1}
Module 513(-1, -2, -2, -2, -2, -2, -1)(1, 2, 2, 2, 2, 2, 1)g_{48}
h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-48}
\varepsilon_{1}+\varepsilon_{2}
0
-\varepsilon_{1}-\varepsilon_{2}
Module 523(0, -2, -2, -2, -2, -2, -1)(2, 2, 2, 2, 2, 2, 1)g_{49}
g_{1}
g_{-47}
2\varepsilon_{1}
\varepsilon_{1}-\varepsilon_{2}
-2\varepsilon_{2}
Module 531(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{1}0
Module 541(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{3}0
Module 551(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{5}0
Module 561(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 571(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{7}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 34
Heirs rejected due to not being maximally dominant: 16
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 16
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{2}_1
Potential Dynkin type extensions: 3A^{2}_1, 2A^{2}_1+A^{1}_1,